Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy
نویسندگان
چکیده
Fresnel Incoherent Correlation Holography (FINCH) enables holograms and 3D images to be created from incoherent light with just a camera and spatial light modulator (SLM). We previously described its application to microscopic incoherent fluorescence wherein one complex hologram contains all the 3D information in the microscope field, obviating the need for scanning or serial sectioning. We now report experiments which have led to the optimal optical, electro-optic, and computational conditions necessary to produce holograms which yield high quality 3D images from fluorescent microscopic specimens. An important improvement from our previous FINCH configurations capitalizes on the polarization sensitivity of the SLM so that the same SLM pixels which create the spherical wave simulating the microscope tube lens, also pass the plane waves from the infinity corrected microscope objective, so that interference between the two wave types at the camera creates a hologram. This advance dramatically improves the resolution of the FINCH system. Results from imaging a fluorescent USAF pattern and a pollen grain slide reveal resolution which approaches the Rayleigh limit by this simple method for 3D fluorescent microscopic imaging.
منابع مشابه
Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination.
The structured illumination (SI) technique has already been well established as a resolution enhancer in many studies and well demonstrated in many optical imaging systems during the past decade. The ability to use the SI in incoherent imaging systems was also introduced, especially in fluorescence microscopy. In this Letter, we propose and demonstrate a new approach to combine the SI technique...
متن کاملIncoherent Digital Holographic Microscopy with Coherent and Incoherent Light
Holography is an attractive imaging technique as it offers the ability to view a complete three-dimensional volume from one image. However, holography is not widely applied to the regime of fluorescence microscopy, because fluorescent light is incoherent and creating holograms requires a coherent interferometer system. We review two methods of generating digital Fresnel holograms of threedimens...
متن کاملTwo-step phase-shifting fluorescence incoherent holographic microscopy.
Fluorescence holographic microscope (FINCHSCOPE) is a motionless fluorescence holographic imaging technique based on Fresnel incoherent correlation holography (FINCH) that shows promise in reconstructing three-dimensional fluorescence images of biological specimens with three holograms. We report a developing two-step phase-shifting method that reduces the required number of holograms from thre...
متن کاملIn-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens.
We report a new optical arrangement that creates high-efficiency, high-quality Fresnel incoherent correlation holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization...
متن کاملSynthetic Aperture Digital Holography
Synthetic aperture is a well-known super-resolution technique which extends the resolution capabilities of an imaging system beyond the theoretical Rayleigh limit dictated by the system's actual aperture. Using this technique, several patterns acquired by an aperture-limited system, from various locations, are tiled together to one large pattern which could be captured only by a virtual system ...
متن کامل